Extremal problems in ordered graphs

نویسنده

  • Craig Weidert
چکیده

In this thesis we consider ordered graphs (that is, graphs with a fixed linear ordering on their vertices). We summarize and further investigations on the number of edges an ordered graph may have while avoiding a fixed forbidden ordered graph as a subgraph. In particular, we take a step toward confirming a conjecture of Pach and Tardos [12] regarding the number of edges allowed when the forbidden pattern is a tree by establishing an upper bound for a particular ordered graph for which existing techniques have failed. We also generalize a theorem of Geneson [7] by establishing an upper bound on the number of edges allowed if the forbidden graphs fit a generalized notion of a matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal problems for ordered (hyper)graphs: applications of Davenport-Schinzel sequences

We introduce a containment relation of hypergraphs which respects linear orderings of vertices and investigate associated extremal functions. We extend, by means of a more generally applicable theorem, the n log n upper bound on the ordered graph extremal function of F = ({1, 3}, {1, 5}, {2, 3}, {2, 4}) due to Füredi to the n(log n)2(log log n)3 upper bound in the hypergraph case. We use Davenp...

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

Maximal m-free digraphs ——– A generalization of tournament graphs

We call a digraph D = (V,E) a maximal m-free digraph if only if D has no cycles of length at most m and adding any ordered pair (u, v) 6∈ E will create a cycle of length at most m. In this note, we investigate this special class of digraphs. We will show that these digraphs share similar properties with tournament digraphs and this ”maximality” condition can be used to solve several extremal pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0907.2479  شماره 

صفحات  -

تاریخ انتشار 2009